Create a Formula for the MuSyC Synergy Model
MuSyC_formula.RdSetup a MuSyC synergy model formula to predict the
E0, E1, C1, h1, E2, C2, h2, log10alpha, and E3alpha
parameters.
Usage
MuSyC_formula(
treatment_1_variable = "logd1",
treatment_1_units = "Log[Molar]",
treatment_2_variable = "logd2",
treatment_2_units = "Log[Molar]",
response_variable = "response",
response_units = NULL,
predictors = 1,
...
)Arguments
- treatment_1_variable
charactervariable representing the treatment.- treatment_1_units
characterthe units of the treatment. The default is log base 10 of the molar concentration- treatment_2_variable
charactervariable representing the treatment.- treatment_2_units
characterthe units of the treatment. The default is log base 10 of the molar concentration- response_variable
charactervariable representing the response to treatment- response_units
characterthe units of the response- predictors
formulaspecify predictors of non-linear parameters. i.e. what perturbations/experimental differences should be modeled separately?- ...
additional arguments passed to
brms::brmsformula()
Examples
if (FALSE) { # \dontrun{
# Data has a string column drug_id with drug identifiers
# Fit a separate model for each drug
BayesPharma::MuSyC_formula(predictors = 0 + drug_id)
# Data has a string column plate_id with plate identifiers
# Estimate the change in response for each plate relative to a global
# baseline.
BayesPharma::MuSyC_formula(predictors = plate_id)
# data has columns drug_id and plate_id
# fit a multilevel model where the drug effect depends on the plate
BayesPharma::MuSyC_formula(predictors = 0 + (drug_id|plate_id))
} # }