Run the Bayesian Sigmoid Growth Model
growth_sigmoid_model.Rd
For additional information on additional function arguments, reference:
brms::brms()
and the stan
documentation.
Usage
growth_sigmoid_model(
data,
formula = growth_richards_formula(),
prior = growth_richards_prior(),
init = growth_richards_init(),
iter = 8000,
control = list(adapt_delta = 0.99),
stanvar_function = growth_sigmoid_stanvar(),
expose_functions = TRUE,
...
)
Arguments
- data
data.frame
of experimental data. Must contain column representing the treatment, response and predictors specified in the formula.- formula
bpformula
object. To create a growth model formula, usegrowth_sigmoid_formula()
- prior
brmspriors
data.frame
forK
,K0
,rate
, andlambda
. To create a prior, usegrowth_sigmoid_prior()
.- init
initial values of the parameters being modeled. To create an init, use
growth_sigmoid_init()
- iter
numeric
value for the number of iterations the model runs. Increasingiter
can help with model convergence- control
a named
list
of parameters to control the sampler's behavior. Addingmax_treedepth
and giving a greater value than10
can improve model convergence- stanvar_function
Stan code for the model
- expose_functions
logical
. Expose the stan functions for the model. This is needed e.g. to runbrms::loo_compare()
- ...
additional arguments passed to
brms::brm()
Value
bpfit
a wrapper for brms::brmsfit()
See also
Helper functions: growth_sigmoid_formula, and growth_sigmoid_prior, growth_sigmoid_init and brms::brmsfit
Examples
if (FALSE) { # \dontrun{
BayesPharma::growth_sigmoid_model(
data = data,
formula = BayesPharma::growth_richards_formula(predictors = 0 + drug))
} # }