Model for the Michaelis Menten Enzyme Kinetics Model
michaelis_menten_model.Rd
Model for the Michaelis Menten Enzyme Kinetics Model
Usage
michaelis_menten_model(
data,
formula = michaelis_menten_formula(),
prior = michaelis_menten_prior(),
init = michaelis_menten_init(),
iter = 8000,
control = list(adapt_delta = 0.99),
stanvar_function = c(BayesPharma::michaelis_menten_stanvar(),
BayesPharma::michaelis_menten_genquant()),
expose_functions = TRUE,
...
)
Arguments
- data
data.frame
of experimental data. must contain columnstime
andP
and any predictors specified in the formula.- formula
brms::brmsformula object. To create a dose-response brms::brmsformula, use the michaelis_menten_formula function.
- prior
brms::brmsprior for
kcat
, andkM
. Usemichaelis_menten_formula()
to create priors to be used here.- init
list
oflists
,numeric
value, or "random" for the initial values of the parameters being modeled.- iter
numeric
of iterations the model runs. Increasingiter
can help with model convergence.- control
a named
list
of parameters to control the sampler's behavior. Addingmax_treedepth
and giving a greater value than10
can improve model convergence.- stanvar_function
stan code for the model
- expose_functions
logical
. Expose the BayesPharma functions for the model- ...
additional arguments passed to
brms::brm()
.
Value
bpfit
object, which is a wrapper around a brms::brmsfit object.