Model for the tQ Enzyme Kinetics Model
tQ_model.Rd
Model for the tQ Enzyme Kinetics Model
Usage
tQ_model(
data,
formula = tQ_formula(),
prior = tQ_prior(),
init = tQ_init(),
iter = 8000,
control = list(adapt_delta = 0.99),
stanvar_function = c(BayesPharma::tQ_stanvar(), BayesPharma::tQ_genquant()),
expose_functions = TRUE,
...
)
Arguments
- data
data.frame
of experimental data. must contain columnstime
andP
and any predictors specified in the formula.- formula
brms::brmsformula object. To create a dose-response brms::brmsformula, use the tQ_formula function.
- prior
brms::brmsprior for
kcat
, andkM
. UsetQ_formula()
to create priors to use here.- init
list
oflists
,numeric
value, or "random" for the initial values of the parameters being modeled.- iter
numeric
of iterations the model runs. Increasingiter
can help with model convergence.- control
a named
list
of parameters to control the sampler's behavior. Addingmax_treedepth
and giving a greater value than10
can improve model convergence.- stanvar_function
stan code for the model
- expose_functions
logical
. Expose the BayesPharma functions for the model- ...
additional arguments passed to
brms::brm()
.
Value
bpfit
object, which is a wrapper around a brms::brmsfit object.
References
Choi, B., Rempala, G.A. & Kim, J.K. Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Sci Rep 7, 17018 (2017). https://doi.org/10.1038/s41598-017-17072-z
See also
tQ_formula, tQ_prior, tQ_init, or tQ_stanvar